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Electrostriction tensor of the cubic blue phases: The role of amplitudes

M. Żelazna,1,2 L. Longa,1,2* H.-R. Trebin,1 and H. Stark1
1Institut für Theoretische und Angewandte Physik, Universita¨t Stuttgart, Pfaffenwaldring 57/VI, D-70550 Stuttgart, Germany

2Instytut Fizyki, Uniwersytet Jagiellon´ski, Reymonta 4, PL-30-059 Krako´w, Poland
~Received 14 January 1998!

The phenomenological theory of electrostriction of the cubic blue phases is further developed by general-
izing the model of rigid helices@H. Stark and H.-R. Trebin, Phys. Rev. A44, 2752 ~1991!#. In the present
approach not only the wave vectors of the cubic structures are distorted, but also the scalar amplitudes of the
order parameter. By considering a full spectrum of the distortions exact formulas~within the Landau-deGennes
approach! for the components of the electrostriction tensor are derived. Detailed results of the numerical
calculations are compared with those obtained from the earlier model and with experimental data. It is shown
that the electrostriction coefficients are strongly affected by the deformations of the amplitudes. Quantitatively,
for low temperatures~or high chiralities! the contribution due to the deformed amplitudes exceeds that from the
distortions of the wave vectors. The results are in good agreement with experimental data except for the region
where the anomalous electrostriction of the blue phase I is observed. This proves that a correct description of
the anomalous electrostriction is beyond the standard Landau-deGennes theory of the blue phases as suggested
in our recent publication@L. Longa, M. Żelazna, H.-R. Trebin, and J. Mos´cicki, Phys. Rev. E53, 6067~1996!#.
@S1063-651X~98!02306-X#

PACS number~s!: 61.30.2v, 64.70.Md, 05.70.Ce, 61.50.Ah
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I. INTRODUCTION

The cubic blue phases~BPs! of chiral liquid crystals, i.e.,
the blue phase I@space groupO8(I4132)# and the blue phase
II @space groupO2(P4232)# have been intensively studie
both experimentally and theoretically@1#. In particular, a
problem that has been receiving much attention is the in
ence of an external electric field on these BPs@2#. Depending
on the field strength three different effects are observed.
weak field the elementary cells of the cubic blue phases a
with their @001# crystallographic axes parallel to the fie
direction@3#. With increasing field strength the unit cells a
deformed continuously. This phenomenon, also known
electrostriction, can be observed from wavelength shifts
Bragg reflections in the visible spectral range@4#. For strong
enough fields, the blue phases transform into structures
hexagonal or tetragonal symmetry@5# and, finally, for very
high fields they unwind into a uniaxial nematic phase.

The most successful theoretical approach to the b
phases has been the application of the Landau-Ginzb
deGennes~LGdG! theory of chiral liquid crystals. The theor
was used by Grebel, Hornreich, and Shtrikman~GHS! @6# to
explain universality of the phase diagrams of chiral liqu
crystals, in particular the appearance and the structure o
blue phases. Later it was extended to include a uniform
ternal field@7#. In this work we concentrate on the electr
striction of the cubic blue phases. Although calculations c
cerning this phenomenon were carried out by Dmitrienko@8#
and a quantitative analysis was performed by Stark and
bin @9# the theory is still at a preliminary stage. A majo
theoretical problem lies in calculating the elastic constant
the blue phases, which enter the formula for electrostrict
So far these calculations have been carried out using
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so-called rigid helices model@9#, in which only wave vectors
of the reciprocal lattice were allowed to deform.

Our objective here is to develop a complete theory wh
is of the same accuracy as present calculations of the p
diagram for BPs@6#. This is achieved by extending th
model of Stark and Trebin@9#. The extension takes into ac
count both the effect of higher harmonics and the full sp
trum of distortions of the alignment tensor. We successfu
overcome theoretical problems in calculating elastic c
stants by combining symmetry considerations with algebr
techniques offered byMAPLE. The analysis seems importan
for we know that calculations involving phase diagrams
blue phases are extremely sensitive to approximations
posed on theQ tensor. Similar sensitivity is found for the
electrostriction tensor.

The organization of the paper is as follows. Section
contains basic elements of the LGdG theory of blue pha
In Sec. III we define the electrostriction tensorR and show
how it follows from our model. We also give details of th
technique employed. Finally, Sec. IV contains the results
a discussion.

II. LANDAU-GINZBURG-DEGENNES THEORY
OF CHOLESTERIC LIQUID CRYSTALS

The Landau-Ginzburg-deGennes theory of liquid cryst
is an expansion in an order parameter which measures
degree of orientational order in the system under consid
ation. To identify the relevant order parameters one eit
refers to the orientational distribution function@10# or con-
siders a response function of the system, e.g., a polariza
P due to an applied electric fieldE. Writing P as a power
series inE, we obtain

P5E d3r$x~1!~r!1x~2!~r!•E1x~3!~r!•~E^ E!1•••%.

~2.1!
6711 © 1998 The American Physical Society
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Due to thelocal D` or D2 symmetry of most liquid crystal-
line phases the permanent polarizationx(1) and the third-
order nonlinear susceptibilityx(3) must vanish. Therefore
the leading term in the expansion~2.1! is the second rank
tensorx(2)(r). Its anisotropic part reads

Qi j ~r!5x i j
~2!~r!2

1

3
Tr@x~2!~r!#d i j , ~2.2!

where

Tr@x~2!~r!#5(
i

x i i
~2!~r!. ~2.3!

Q(r) in Eq. ~2.2! is denotedalignment tensorand usually
taken as a primary order parameter of liquid crystals.
construction, this symmetric and traceless quantity vanis
in the disordered phase. It becomes nonzero in any ph
characterized by orientational order of liquid crystalline m
ecules. The LGdG free energy functional follows then from
series expansion inQ(r) and its derivatives. To the lowes
nontrivial order it reads

FLGdG@Q~r!#5Fgradient@Q~r!,]Q~r!#1Fbulk@Q~r!#.
~2.4!

In terms of dimensionless units introduced by Grebelet al.
@6# the gradient and the bulk parts in Eq.~2.4! are

Fgradient@Q~r!,]Q~r!#

5v21E d3rH 1

4
k2@e imnQn j ,m2Qi j #

21r@Qi j , j #
2J , ~2.5!

Fbulk@Q~r!#5v21E d3r$t Tr Q22A6 TrQ31Tr~Q2!2%.

~2.6!

Here k denotes the chirality parameter,t the standard
reduced temperature of the Landau theory,t5 1

4 (t2k2) a
renormalized reduced temperature,r the ratio of elastic
constants, andv the volume of the cubic unit cell@6#. That
is, the theory has only three characteristic parameters:t, k,
andr.

The global minimization of the free energy~2.4! at an
arbitrary point in the (k,t) plane turns out to be extremel
difficult and is still unsolved. A source of this difficulty is th
presence of the chiral term~proportional toe imn! in Eq. ~2.5!.
It causes the bulk and the gradient free energy to favor
ferent structures. Thus the cubic blue phases, which em
from the LGdG theory, are an example of afrustrated sys-
tem, i.e., a system where the condition of a local energe
minimum cannot be extended globally. Their structures
rive as a kind of compromise.

In all practical calculations based on the LGdG free e
ergy it is convenient to parametrize the order parameteQ
with respect to the symmetry of the system studied. Since
shall be interested in periodic structures of cubic symme
we expandQ(r) into a Fourier series:
y
es
se
-
a

f-
ge

c
r-

-

e
y

Q~r!5(
* k

1

AN* k

H (
kP* k

Q~k!eik•rJ , ~2.7!

where

Q~k!5
1

vE d3rQ~r!e2 ik•r . ~2.8!

The first sum in the expansion~2.7! runs over different stars
of k vectors from the reciprocal cubic lattice and the seco
sum over allN* k members of the star *k. The coefficients
Q(k) are traceless second-rank tensors and can furthe
represented in the basis of spherical tensors with momen
L52. Explicitly

Q~k!5 (
m522

2

Qm~k!Mm~k!, ~2.9!

wherem labels differenthelicity modes. The basis matrices
Mm(k) are defined separately for each wave vectork. With
the help of a right-handed local system of orthonormal u
vectors$ĵ,ĥ,k̂5k/uku%, wherek̂ defines the localẑ axis, the
basis matrices read

M0~k!5
1

A6
$3k̂^ k̂21%,

M61~k!56
1

2
$~ ĵ6 iĥ! ^ k̂1 k̂^ ~ ĵ6 iĥ!%, ~2.10!

M62~k!5
1

2
$~ ĵ6 iĥ! ^ ~ ĵ6 iĥ!%.

In the high chirality limit, which was extensively studied b
GHS @6#, the quadratic part of the free energy~2.4! can be
minimized separately. In particular, it is found that fork
.0 only the m52 helicity mode ofQ is important. This
rules out the elastic constantr from the free energy and
simplifies the order parameter expansion. Now it reads

Q~r!5(
* k

1

AN* k

H (
kP* k

Q2~k!M2~k!eik•rJ . ~2.11!

A detailed analysis of the cholesteric phase diagrams fur
shows that for the blue phase II only two symmetry-allow
amplitudes need to be considered in Eq.~2.11!, while for the
blue phase I the three lowest-lying states are relevant@6#. A
purpose of this paper is to carry out calculations of the el
trostriction tensor with the same accuracy as that for
phase diagrams, and without any further approximations

III. ELECTROSTRICTION OF THE CUBIC BLUE PHASES

The phenomenon of electrostriction can be viewed a
competition between electric and elastic forces. The eme
ing structure results from a continuous deformation of
zero-field state. This distortion can be described by the st
tensor
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FIG. 1. The ratioR1 /R3 of the independent components of the electrostriction tensor for four different chiralities:~a! k50.8, ~b! k51.4,
~c! k51.8, and~d! k52.0. The dashed and the solid lines correspond to the model without and with the deformation of scalar amp
respectively.
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2
~] iv j1] jv i !, ~3.1!

where the displacement vectorv represents the shift of th
lattice points due to the deformation. Since the unit cells
the blue phases are defined by acomplex orientational pat-
tern andnot by a positional order of the molecules, this sh
cannot be associated with a molecular motion.

The excess free energy due to the distortion reads

~3.2!

wherel is the tensor of elastic constants,d8 relates the ex-
ternal and internal electric field, ande is the dielectric tensor
The latter is expanded into a power series of the strain te
« and the electric fieldE,

e5e~0!1b«1e~4!~E^ E!. ~3.3!
f

or

The first term on the right-hand side denotes the isotro
part. The second one describes the elasto-optic effect, w
b is the elasto-optic tensor. Finally, the last term accounts
a nonlinear response inE.

In order to obtain the equilibrium value of the strain te
sor « we minimizeFdistortion for a given electric fieldE,

]Fdistortion

]«
5l«2

d8

8p
b~E^ E!50. ~3.4!

Solving Eq.~3.4! for « yields the electrostriction tensorR,

«5R~E^ E!, R5
d8

8p
l21b. ~3.5!

Clearly, to findR we need to calculatel andb from the
LGdG model of the blue phases. The starting point of su
calculations is the elastic free energy, i.e., the free ene
difference between the distorted and undistorted states. In
LGdG approach it reads
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Felastic5
1

2
l~«^ «!5F @Q̃,]Q̃#2F@Q,]Q#, ~3.6!

whereQ̃ denotes the order parameter of the deformed st
ture. To obtain its precise form we need a model for
deformationQ̃.

For that purpose we note that when the real lattice
distorted proportionally to the strain tensor« the reciprocal
lattice behaves inversely@8#. Hence, the distorted order pa
rameter must depend on the deformed wave vectorsk̃5(1
2«)k. Additionally, it acquires a homogeneous term, pr
portional to the strain tensor, which is forbidden in syste
with cubic symmetry. Thus in a symbolic way this deform
tion can be written as

Q~r! ——→
deformation

Q̃~r!5b«1(
k̃

Q2~ k̃!M2~ k̃!ei k̃•r

5(
* k̃

1

AN* k̃

3H (
k̃P* k̃ø0

Q2~ k̃!M2~ k̃!ei k̃–rJ ,

~3.7!
st

em
e
e
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-
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whereb is the elasto-optic tensor, which we introduced

Eq. ~3.3!. Additionally, * k̃ stands for the set ofk̃ vectors
obtained from the deformation of* k, Q2(0)M2(0)
[AN* k̃ b«, andN* k̃5N* k.

In the earlier work on electrostriction by Stark and Treb
@9#, also referred to as themodel of rigid helices, the scalar

amplitudesQ2( k̃) of Q̃(r) were kept fixed:Q2( k̃)[Q2(k). It
is the main purpose of the present work to extend the mo
of rigid helices by additionally including the deformation o
the amplitudes. Such analysis seems important as the
sponse of the blue phases to an external field is very sens
to the underlying structure@2#.

In analogy to the calculations performed in@9# the expres-

sions for the deformed basis modesM2( k̃) are derived by

rotatingM2(k) about an axis perpendicular tok and k̃. They
read@9#

M2~ k̃!5M2~k!1@M1~k! ^ M1~k!#«1•••. ~3.8!

Consequently, the free energyF @Q̃,]Q̃# of the deformed
state which enters the definition of the elastic free energy
be written as
F @Q̃,]Q̃#5(
* k̃

1

N* k̃
(

k̃P* k̃ø0
F t

4
1

1

4
k2k̃ 22

1

2
k2uk̃uGQ2~ k̃!Q2~2 k̃!

2A6 (
* k̃1 ,* k̃2 ,* k̃3

1

AN* k̃1
N* k̃2

N* k̃3

(
k̃aP* k̃1ø0

(
k̃bP* k̃2ø0

(
k̃gP* k̃3ø0

Q̃aQ̃bQ̃gTr@M̃aM̃bM̃g#d~ k̃a1 k̃b1 k̃g!

1 (
* k̃1 ,* k̃2 ,* k̃3 ,* k̃4

1

AN* k̃1
N* k̃2

N* k̃3
N* k̃4

(
k̃aP* k̃1ø0

(
k̃bP* k̃2ø0

(
k̃gP* k̃3ø0

(
k̃mP* k̃4ø0

3Q̃aQ̃bQ̃gQ̃mTr@M̃aM̃b#@M̃gM̃m#d~ k̃a1 k̃b1 k̃g1 k̃m!, ~3.9!
e

whereQ̃a[Q2( k̃a), M̃a[M2( k̃a), and whered is the Kro-
necker delta function. In order to extract the tensor of ela
constants from the formula~3.9! we still need to introduce
the deformation of the amplitudes. Up to linear order in« it
can be written as

Q2~ k̃!5Q2~k!1c~k!•«1•••, ~3.10!

where the matricesc(k) represent the derivatives ofQ2( k̃)
with respect to the components of the strain tensor«. In
general, there are as many differentc(k) matrices ask vec-
tors modeling the ground state. Fortunately, not all of th
are independent. This is a consequence of the symm
properties of the order parameter. To clarify this statem
let us write the deformed order parameter field as
ic

try
nt

Q̃~r!5Q0~r!1b«1Q1~r!«1•••. ~3.11!

Clearly, the coefficientsQ0(r) andQ1(r) should possess th
symmetry of the cubic ground state which requires that

@$Sut%Qn#~r!5Qn~r!, n50,1 ~3.12!

where $Sut% is an element of the space groupO8 or O2. It
consists of a combination of a rotationS from the cubic point
group and a translationt @11#. The first condition provides a
relation for the ground state amplitudesQ2(k),

Q2~k!5Q2~Sk!, ~3.13!

whereas the second yields restrictions on the matricesc(k)
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Sc~k!5c~Sk!, ~3.14!

where we choose a symbolic notationSk and Sc for the
rotatedk andc. Equation~3.14! means that for each star o
k vectors we need to know onlyone of the c(k) matrices.
All the others can be systematically generated by acting w
the point group elementsS on this representative. For a ge
eral star, the matrixc~k! possesses six independent comp
nents. In the case of a degenerate star~Sk5k,SÞ1! Eq.
~3.14! gives

Sc~k!5c~k!, ~3.15!

which means thatc has the little group ofk as its symmetry
group. Fork and2k belonging to the same star we have
further restriction onc’s that comes from the reality cond
tion of the order parameter, namely,

c* ~k!5c~2k!. ~3.16!

Taking into account the relations~3.15! and~3.16! we can
calculate the general form of thec(k) matrices for the rel-
evant, leading stars ofk vectors that describe BPI and BPI
The result is

c~@n00# !5S a1n 0 0

0 b1n 0

0 0 b1n

D ,

c~@nn0# !5S a2n b2n 0

b2n a2n 0

0 0 c2n

D , ~3.17!

c~@n2n2n# !5S a3n b3n c3n

b3n a3n c3n

c3n c3n d3n

D .

Inserting Eqs.~3.8!, ~3.10!, and ~3.17! into Eq. ~3.7!
yields the deformed tensor fieldQ̃(r), which is accurate up to
terms linear in«. Since the expansion~3.7! is performed
around the minimum value of the free energy this linear
proximation is sufficient to obtain exact formulas for th
tensorl. The calculations are involved due to the presen
of cubic and quartic terms in the expansion~3.9! and are
carried out usingMAPLE package for symbolic calculations
The procedure is the following: in the first step all the ba
tensorsMm(k) are expressed in a common coordinate s
tem. Next, the closed loops formed by three or four wa
vectorsk̃a are identified by noting the relation between d
formed and undeformed vectors that sum up to zero:k̃1

1 k̃21 k̃31•••505k11k21k31•••. For each such loop
the corresponding contribution to Eq.~3.9! is calculated by
appropriate multiplication and tracing of the associated m
trices. The huge number of contributions is partly reduced
observing permutation symmetry of the trace operation.

The fourth-rank tensor of elastic constantsl so deter-
mined has a cubic symmetry and therefore it has only th
independent elements. We denote theml15l1111, l2
5l1122, and l35l2323. Since the formulas are about fou
h
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-

e

s
-
e
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-
y

e

pages long we will not present them here. On request
could provide them in the form of anASCII file. They depend
on the elements of thec(k) matrices and on the componen
of the elasto-optic tensorb. The latter is also a fourth-rank
tensor of cubic symmetry and its three independent com
nents usually are denoted asb15b1111, b25b1122, and b3
5b2323 @12#. Assuming that the deformation leaves the ma
density unchanged an additional relation holds, namely,b1
522b2 @9#.

The equilibrium value of thec(k) matrices and of the
elasto-optic tensorb are then determined by minimizing th
elastic free energy for arbitrary distortions«,

]l•~«^ «!

]b
50,

]l•~«^ «!

]c~k!
50. ~3.18!

Finally, the equilibrium tensorl with its three indepen-
dent elements is evaluated by substituting the solutions
c(k) andb. Together withb, it allows for the determination
of the electrostriction tensorR.

IV. RESULTS AND SHORT SUMMARY

The independent components ofR read

R15
d8

8p

b1

l12l2
522R2 , R35

d8

8p

b3

l3
. ~4.1!

All of them are functions of the cubic ground state amp
tudesQ2(k) where the latter are obtained by minimizing th
LGdG free energy function for fixed values oft andk. The
temperature dependence of the ratioR1 /R3 for different val-
ues of chiralityk is shown in Fig. 1.

Now we compare the results of present calculations w
the model of rigid helices@9#. The predictions arriving from
these two models differ quantitatively up to 50%. For t
blue phase II the model proposed in this paper fits bette
experimental data, which are summarized in Table I.

The experimental values forR1 /R3 are in general higher
than the predictions of the model of rigid helices and ag
with the calculations presented in this paper. The situatio
more complex for the blue phase I. Our model can eit
lower or enlarge the ratioR1 /R3 depending on the chirality
But it cannot yield the negative values predicted by t

TABLE I. Experimental values of theR1 /R3 for different chiral
compounds@4#.

Blue phase II

Compound 1 2 3

R1 /R3 0.42 0.83 1.03

Blue phase I

Compound 1 2 3

R1 /R3 20.07 20.38 20.27
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experiments, i.e., cannot describe the anomalous electros
tion of the blue phase I.

Summarizing, we have developed a complete theory
the electrostriction of the cubic blue phases within the st
dard Landau-Gizburg-deGennes model. The rigid helices
proximation proposed earlier by Stark and Trebin@9# was
generalized by taking into account the full spectrum of d
formations of the tensor order parameter. Exact express
~within LGdG theory! for the independent components of th
electrostriction tensorR were obtained. Interestingly, the re
sults for the blue phase II are in good agreement with
J

. A
ic-

f
-

p-

-
ns

e

experimental data. However, the anomalous electrostric
of the blue phase I cannot be explained by the general
model. Therefore we conclude that a proper description
this phenomenon is beyond the standard LGdG theory. O
possible explanation can be obtained within the bond-or
model @13#.
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