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Electrostriction tensor of the cubic blue phases: The role of amplitudes
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The phenomenological theory of electrostriction of the cubic blue phases is further developed by general-
izing the model of rigid helice§H. Stark and H.-R. Trebin, Phys. Rev. 44, 2752(1991)]. In the present
approach not only the wave vectors of the cubic structures are distorted, but also the scalar amplitudes of the
order parameter. By considering a full spectrum of the distortions exact forrwitiain the Landau-deGennes
approach for the components of the electrostriction tensor are derived. Detailed results of the numerical
calculations are compared with those obtained from the earlier model and with experimental data. It is shown
that the electrostriction coefficients are strongly affected by the deformations of the amplitudes. Quantitatively,
for low temperaturegor high chiralitie$ the contribution due to the deformed amplitudes exceeds that from the
distortions of the wave vectors. The results are in good agreement with experimental data except for the region
where the anomalous electrostriction of the blue phase | is observed. This proves that a correct description of
the anomalous electrostriction is beyond the standard Landau-deGennes theory of the blue phases as suggested
in our recent publicatiofiL. Longa, M. Zelazna, H.-R. Trebin, and J. Maiski, Phys. Rev. 553, 6067(1996)].
[S1063-651%98)02306-X

PACS numbgs): 61.30-v, 64.70.Md, 05.70.Ce, 61.50.Ah

I. INTRODUCTION so-called rigid helices modg®], in which only wave vectors
of the reciprocal lattice were allowed to deform.
The cubic blue phasg8Ps of chiral liquid crystals, i.e., Our objective here is to develop a complete theory which

the blue phase[lspace grou®®(74,32)] and the blue phase is of the same accuracy as present calculations of the phase
Il [space groupD?(P4,32)] have been intensively studied diagram for BPs[6]. This is achieved by extending the
both experimentally and theoreticalf]. In particular, a model of Stark and Trebif@]. The extension takes into ac-
problem that has been receiving much attention is the influcount both the effect of higher harmonics and the full spec-
ence of an external electric field on these BPs Depending  trum of distortions of the alignment tensor. We successfully
on the field strength three different effects are observed. In gvercome theoretical problems in calculating elastic con-
weak field the elementary cells of the cubic blue phases alightants by combining symmetry considerations with algebraic
with their [001] crystallographic axes parallel to the field techniques offered byaPLE. The analysis seems important
direction[3]. With increasing field strength the unit cells are for we know that calculations involving phase diagrams of
deformed continuously. This phenomenon, also known a¥lue phases are extremely sensitive to approximations im-
electrostriction can be observed from wavelength shifts of posed on theQ tensor. Similar sensitivity is found for the
Bragg reflections in the visible spectral rar/gé For strong €lectrostriction tensor.
enough fields, the blue phases transform into structures with The organization of the paper is as follows. Section II
hexagonal or tetragonal symmeffy] and, finally, for very ~ contains basic elements of the LGdG theory of blue phases.
high fields they unwind into a uniaxial nematic phase. In Sec. lll we define the electrostriction tend®rand show
The most successful theoretical approach to the blu&ow it follows from our model. We also give details of the
phases has been the application of the Landau-GinzburgeChnique. employed. Finally, Sec. IV contains the results and
deGenne$L.GdG) theory of chiral liquid crystals. The theory @ discussion.
was used by Grebel, Hornreich, and Shtrikni@&tS) [6] to
explain universality of the phase diagrams of chiral liquid IIl. LANDAU-GINZBURG-DEGENNES THEORY
crystals, in particular the appearance and the structure of the OF CHOLESTERIC LIQUID CRYSTALS

blue phases. Later jt was extended to include a uniform ex- The Landau-Ginzburg-deGennes theory of liquid crystals
ternal field[7]. In this work we concentrate on the electro- js 4 expansion in an order parameter which measures the
striction of the cubic blue phases. Although calculations CONYegree of orientational order in the system under consider-

cerning this phenomenon were carried out by Dmitrief80 440 To identify the relevant order parameters one either
and a quantitative analysis was performed by Stark and Treeters to the orientational distribution functi®ho] or con-

bin [9] the theory is still at a preliminary stage. A major giqers 4 response function of the system, e.g., a polarization
theoretical problem lies in calculating the elastic constants op yue to an applied electric field. Writing P as a power

the blue phases, Whic_h enter the formula fo_r electrostrictionseries inE, we obtain
So far these calculations have been carried out using the

P [ @rx )+ X0 E+ X0 (BB + .
*Electronic address: uflonga@kinga.cyf-kr.edu.pl (2.1
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Due to thelocal D., or D, symmetry of most liquid crystal- 1 _
line phases the permanent polarizatigft) and the third- QAr=> [ > Q(k)e‘k'r}, (2.7
order nonlinear susceptibilitg!®> must vanish. Therefore, *k Ny, [ ke*k
the leading term in the expansidf@.l) is the second rank
tensory?)(r). Its anisotropic part reads where

() 1 2 Q(k) = Ef d*rQ(rye 'k (2.8

Qij (N = xjj (r)_gTr[X( (16, (2.2 v ' '
The first sum in the expansid®.7) runs over different stars

where of k vectors from the reciprocal cubic lattice and the second

sum over allN, , members of the stark The coefficients
Q(k) are traceless second-rank tensors and can further be
represented in the basis of spherical tensors with momentum
L=2. Explicitly

T x?(N]=2 x2(n). 2.3

Q(r) in Eg. (2.2 is denotedalignment tensorand usually 2

taken as a primary order parameter of liquid crystals. By _

construction, this symmetric and traceless quantity vanishes Q(k) _m;2 Qm(KIMm(k), 2.9

in the disordered phase. It becomes nonzero in any phase

characterized by orientational order of liquid crystalline mol-wherem labels differenthelicity modesThe basis matrices
ecules. The LGdG free energy functional follows then from aM (k) are defined separately for each wave vestowith
series expansion iQ(r) and its derivatives. To the lowest the help of a right-handed local system of orthonormal unit

nontrivial order it reads vectors{ £, ,k=Kk/|k|}, wherek defines the locat axis, the

basis matrices read
FLGdG[Q(r)]:fgradien[Q(r)an(r)]+~7:bulk[Q(r)]-
(2.4 1 . .
Mo(k)=T{3k® k—1},
In terms of dimensionless units introduced by Grededl. 6

[6] the gradient and the bulk parts in EQ.4) are 1

Mes(k)==5{(Exipok+tko(Exin}, (210
fgradien[Q(r)raQ(r)]

1 1 . . s A
=v—ljdsr[zKz[eiannj,m—Qi,-]2+p[Qi,-,j]2 . 29 M.o(k) =5 {(E=ipeE=in).

In the high chirality limit, which was extensively studied by
]-“bmk[Q(r)]:v‘lJ {7 TrQ?— 6 TrQ*+ Tr(Q?)2. GHS[6], the quadratic part of the free ener(8.4) can be
2.6 minimized separately. In particular, it is found that fer
' >0 only them=2 helicity mode ofQ is important. This

rules out the elastic constapt from the free energy and

Here « denotes the chirality parametet, the standard simplifies the order parameter expansion. Now it reads

reduced temperature of the Landau theory; 3 (t—«?) a
renormalized reduced temperature,the ratio of elastic

constants, and the volume of the cubic unit ce]B]. That Q(r)zz ! E Q. (KM, (k)ekrt.  (2.11)
is, the theory has only three characteristic parameters; *k Ny, [ ke*k
andp.

The global minimization of the free enerd®.4) at an A detailed analysis of the cholesteric phase diagrams further
arbitrary point in the k,t) plane turns out to be extremely shows that for the blue phase Il only two symmetry-allowed
difficult and is still unsolved. A source of this difficulty is the amplitudes need to be considered in E2j11), while for the
presence of the chiral tertproportional toe;,,) in EQ.(2.5.  blue phase | the three lowest-lying states are relef@ntA
It causes the bulk and the gradient free energy to favor difpurpose of this paper is to carry out calculations of the elec-
ferent structures. Thus the cubic blue phases, which emergeostriction tensor with the same accuracy as that for the
from the LGdG theory, are an example ofrastrated sys- phase diagrams, and without any further approximations.
tem i.e., a system where the condition of a local energetic
minimum gannot be exten'ded globally. Their structures ary, ELECTROSTRICTION OF THE CUBIC BLUE PHASES
rive as a kind of compromise.

In all practical calculations based on the LGdG free en- The phenomenon of electrostriction can be viewed as a
ergy it is convenient to parametrize the order paramé€ter competition between electric and elastic forces. The emerg-
with respect to the symmetry of the system studied. Since wing structure results from a continuous deformation of the
shall be interested in periodic structures of cubic symmetrygero-field state. This distortion can be described by the strain
we expandQ(r) into a Fourier series: tensor
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FIG. 1. The ratioR; /R of the independent components of the electrostriction tensor for four different chirgli#fies=0.8, (b) x=1.4,
(c) k=1.8, and(d) k=2.0. The dashed and the solid lines correspond to the model without and with the deformation of scalar amplitudes,
respectively.

1 The first term on the right-hand side denotes the isotropic
eij =5 (divj+djvi), (3.1)  part. The second one describes the elasto-optic effect, where
b is the elasto-optic tensor. Finally, the last term accounts for

) ) a nonlinear response ia.
where the displacement vectorrepresents the shift of the  |n order to obtain the equilibrium value of the strain ten-

lattice points due to the deformation. Since the unit cells ofsor &£ we minimize Fyigorion fOr @ given electric fieldE,
the blue phases are defined bg@mplex orientational pat-
tern andnot by a positional order of the molecules, this shift

cannot be associated with a molecular motion. 97 gistortion o'
. . ————=Ae— z—h(E®E)=0. 3.4
The excess free energy due to the distortion reads Jde -y (E®E) 3.4
1 8’ . . -
]:dismoﬁz)\. (e® 8)“ﬂf' (EQE), Solving Eq.(3.4) for £ yields the electrostriction tens&,

Fe elastic Fe electric (32) 5'
e=R(E®E), R=_—\"1h. (3.5

8

whereX is the tensor of elastic constant®, relates the ex-
ternal and internal electric field, ards the dielectric tensor. Clearly, to findR we need to calculata andb from the

The latter is expanded into a power series of the strain tensQ's 4G model of the blue phases. The starting point of such
& and the electric field, calculations is the elastic free energy, i.e., the free energy

difference between the distorted and undistorted states. In the
e=€e%+be+ €Y (EQE). (3.3  LGdG approach it reads
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1 - whereb is the elasto-optic tensor, which we introduced in
felastic:i)‘(":@ £)=71[Q,dQ]—-FQ,4Ql, (3.6 Eqg. (3.3. Additionally, *k stands for the set ok vectors
obtained from the deformation of*k, Q,(0)M,(0)
whereQ denotes the order parameter of the deformed struc= /N« be, andNx«z Nuy
ture. To obtain its precise form we need a model for the In the earlier work on electrostriction by Stark and Trebin
deformationé. [9], also referred to as th@odel of rigid helicesthe scalar
For that purpose we note that when the real lattice iSampIitudesQZ(F) of Q(r) were kept fixesz(E)EQz(k)_ It
distorted proportionally to the strain tenserthe reciprocal s the main purpose of the present work to extend the model
lattice behaves inversel8]. Hence, the distorted order pa- of rigid helices by additionally including the deformation of

rameter must depend on the deformed wave vedter6l  the amplitudes. Such analysis seems important as the re-

—g)k. Additionally, it acquires a homogeneous term, pro-sponse of the blue phases to an external field is very sensitive
portional to the strain tensor, which is forbidden in systemso the underlying structurg2].

with cubic symmetry. Thus in a symbolic way this deforma- | analogy to the calculations performed 8 the expres-
tion can be written as sions for the deformed basis modik (k) are derived by

deformation_ ~ o rotatingM,(k) about an axis perpendicular koandk. They
Q(r) —— Q) =be+ X, Qx(k)M,(k)ek" read[9]
k
1 ~
4 T — My(K) =My(K) +[My(K)®@My (k) ]e+---. (3.8
*k N*]Z
><|~ > Qz(TOMz(F)eik'r]y Consequently, the free energ§[Q,dQ] of the deformed
ke*kuo

state which enters the definition of the elastic free energy can
(3.7 be written as

—
=
=

—+ —k%k2— = kK|

22 > Qa(K)Qa(—k)

—\/6 ~ 2 \/N: 2 E z QQQBQYTI‘[MHMBMYJ(S(’RQ‘F’RI;‘F’RQ

*Kq ,*RZ,*E3 *ilN*KZN*i% Rae *Eluo EBE *RZUO .Izye *.|23U0

1

+ X > X > 2

"Ry ¥R R ¥R VN N N Nk, Ry 7y U0 R FipU0 Ky *kgU0 &, *kgU0

XQ,Q4Q,Q0,TIM MM, M, ]k, +ks+k,+K,), (3.9

whereQ,=Q,(k,), M,=M,(k,), and wheres is the Kro- Q(r)=Qu(r)+be+Qy(r)e+---. (3.1
necker delta function. In order to extract the tensor of elastic
constants from the formul8.9) we still need to introduce Clearly, the coefficient€,(r) andQ,(r) should possess the

the deformation of the amplitudes. Up to linear ordekit  symmetry of the cubic ground state which requires that
can be written as

~ [{SIQul(r)=Qxn(r), n=0,1 (3.12
Q2(K)=Qa(K) + ¢h(k) - &+ - - -, (3.10
where{S|t} is an element of the space gro@5 or O2. It

where the matricegi(k) represent the derivatives qz(ﬁ) consists of a combination of a rotati&@from the cubic point
with respect to the components of the strain tensoin  group and a translation[11]. The first condition provides a
general, there are as many differef(tk) matrices ak vec-  relation for the ground state amplitud@s(k),
tors modeling the ground state. Fortunately, not all of them
are independent. This is a consequence of the symmetry Q2(k)=Q2(Sk), (3.13
properties of the order parameter. To clarify this statement
let us write the deformed order parameter field as whereas the second yields restrictions on the matrgéd
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Sy(k) =y SK), (3.19 pages long we will not present them here. On request we
could provide them in the form of axscii file. They depend

where we choose a symbolic notati@k and Sy for the  on the elements of th¢{k) matrices and on the components
rotatedk and 4. Equation(3.14 means that for each star of of the elasto-optic tensds. The latter is also a fourth-rank
k vectors we need to know onlgne of the k) matrices. tensor of cubic symmetry and its three independent compo-
All the others can be systematically generated by acting witthents usually are denoted Bg=Db;;1;, b,=b1100, andb,
the point group elements on this representative. For a gen- =b,3,3[12]. Assuming that the deformation leaves the mass
eral star, the matrix(k) possesses six independent compo-density unchanged an additional relation holds, namejy,

nents. In the case of a degenerate $Bk=k,S#1) Eq. =-2b,[9].
(3.14 gives The equilibrium value of thay(k) matrices and of the
elasto-optic tensolp are then determined by minimizing the
Sy(k) =gk, (3.19 elastic free energy for arbitrary distortioes
which means thaty has the little group ok as its symmetry
group. Fork and —k belonging to the same star we have a IN-(E®€) IN-(E®€)
further restriction ony's that comes from the reality condi- b IK) =0. 3.18

tion of the order parameter, namely,

¥ (K)=y{ —K). (3.16 Finally, the equilibrium tensol with its three indepen-
dent elements is evaluated by substituting the solutions for
Taking into account the relationf8.15 and(3.16 we can  y{k) andb. Together withb, it allows for the determination
calculate the general form of thé(k) matrices for the rel- of the electrostriction tensdr.
evant, leading stars d&f vectors that describe BPI and BPII.

The result is
IV. RESULTS AND SHORT SUMMARY
al 0
A The independent components Rfread
¥[noo)=| O bl, 0O |,
°0 M R=> P op g lbs 4.1
a2, b2, 0 TV v L T
W[nn0])=| b2, a2, O [, (3.17) _ . :
0 0 o2 All of them are functions of the cubic ground state ampli-
n tudesQ,(k) where the latter are obtained by minimizing the
a3 b3. c3 LGdG free energy function for fixed values band «. The
. n n temperature dependence of the rdig/ R, for different val-
Yy[n2n2n])=| b3, a3, c3,]. ues of chiralityx is shown in Fig. 1.
c3, c3, d3, Now we compare the results of present calculations with

the model of rigid helice§9]. The predictions arriving from
Inserting Egs.(3.9), (3.10, and (3.17) into Eq. (3.7  these two models differ quantitatively up to 50%. For the

yields the deformed tensor fie@(r), which is accurate up to Plue phase Il the model proposed in this paper fits better to
terms linear ine. Since the expansiofB.7) is performed experlmental_data, which are summanzgd in Table I_.
around the minimum value of the free energy this linear ap- "€ experimental values fd%, /R are in general higher
proximation is sufficient to obtain exact formulas for the than the predictions of the model of rigid helices and agree
tensorA. The calculations are involved due to the presencé""th the calculations presented in this paper. The situation is
of cubic and quartic terms in the expansit®h9) and are More complex for the blue phase I. Our model can either
carried out usinguAPLE package for symbolic calculations. lower or enlarge the rati&; /R; depending on the chirality.
The procedure is the following: in the first step all the basisBut it cannot yield the negative values predicted by the
tensorsM, (k) are expressed in a common coordinate sys-

tem. Next, the closed loops formed by three or four wave TABLE I. Experimental values of thR, /R; for different chiral

vectorsk,, are identified by noting the relation between de-compounds4].
foLme(i and undeformed vectors that sum up to zégo: Blue phase Il
+ky+kg+---=0=k;+k,+ks+---. For each such loop
the corresponding contribution to E¢B.9) is calculated by ~Compound 1 2 3
appropriate multiplication and tracing of the associated mag g 0.42 0.83 1.03
trices. The huge number of contributions is partly reduced by v
observing permutation symmetry of the trace operation. Blue phase |

The fourth-rank tensor of elastic constamsso deter-
mined has a cubic symmetry and therefore it has only thre&°MPouUnd L 2 3

independent elements. We denote them=M\1111, N2  R,/R, —0.07 —~0.38 —0.27
=N\1122, andA3=N\53,3. Since the formulas are about four
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experiments, i.e., cannot describe the anomalous electrostriexperimental data. However, the anomalous electrostriction
tion of the blue phase I. of the blue phase | cannot be explained by the generalized

Summarizing, we have developed a complete theory ofmodel. Therefore we conclude that a proper description of
the electrostriction of the cubic blue phases within the stanthis phenomenon is beyond the standard LGdG theory. One
dard Landau-Gizburg-deGennes model. The rigid helices agpossible explanation can be obtained within the bond-order

proximation proposed earlier by Stark and Treb#} was  model[13].
generalized by taking into account the full spectrum of de-
formations of the tensor order parameter. Exact expressions
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